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Chapter 1

Introduction

In the last decades analysis and processing of Remote Sensing ( RS ) data have become
a very important tool for monitoring the Earth and human activities, due to the intrinsic
ability of aircrafts or spacecrafts to have a large scale view of the Earth surface. RS im-
age are useful in fields such as environmental monitoring, land processes, atmospheric
science, hydrology, oceanography etc.Nowadays the advancements in RS and computer
technology and the ever-increasing number of civilian satellites give birth to the so-called
RS big data era [1,2]. Big data as explained in [3], is a concept that mainly is described
by the known three V, that are Volume, Variety and Velocity.  Volume , refers to the
quantity of data. Thinking for example that Sentinel mission alone is capable to collects
more than 20 TBs of data per day. Variety is a notion about the heterogeneity of data.
In fact today exists a wide range of sensors and platforms [4]. In the past satellite mis-
sions were focused on a single sensor, while currently trend is following a cooperative
sensing approach. A clear example is given by constellations like Sentinel missions. The
approach to use multiple sensors in a mission leads to the wide variety of data. Paradigm
like tandem mission always like Sentinel satellites is related do the speed of acquisition,
in fact the third big data V stands for Velocity . For example Sentinel-2 has a revisit time
of 10 days at equator if only one satellite is considered or 5 days, always at the equator,
if both satellites are considered [5].During the years big data analysts add other terms to
define big data, such as Veracity ( uncertainty of data ), Variability and Complexity ,
Visualization and Value . 1t is clear that big data environment is challenging and dif-
ficulties lie in all sub-system of data handling pipeline, such as managing, processing,
storing, loading, etc. Then without an effective solution risk that most of the information
remains buried and never accessed is real. Researches to solve this problem have proposed
various information retrieval paradigms, one of the most famouse for visual informations
and images is the so-called Content-Based Image Retrieaval(CBIR). Generally a CBIR
system is composed by two stages [6]: the first is concerning feature extraction, that is
the process which find a discriminative description of image content. Second procedure
is about image matching, in which query image descriptors are compared with those of
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all other images present in the archive and therefore the most relevant are retrieved. The
main issue to process a huge amount of images is the computational load of processing
algorithms and consequently computing heaviness directly affects processing time. For
these reasons, in various type of applications, is not advantageous to processing the entire
information enclosed in images, but is enough to exploit only a part of it. For example
it is not uncommon to perform investigations on the so called quick look (QL) products,
that is a subsampled and/or lossy compressed version of the original data. QL products
are mainly used by the expert user, in order to visually inspects the image before down-
loading it, but in the last years automatic analysis methods for QL imagery were proposed
for lightening processing chain and obtaining acceptable results without employing the
full resolution products [7-9]. These new methodologies could resolve in part the new
problems of management, processing and interpretation of RS data arisen from massive
availability of the latter. The accessibility of large volume of RS data is largely attributed
to some new policies introduced on free access and distribution of satellites data, as the
one of Landsat products from USGS [10].Obviously the analysis of QL imagery have an
enormous advantage in terms of data volume reduction, but still is not enough when the
analysis are done at global scale [7], or simply when is necessary to execute advanced im-
age processing in acceptable time, due to the fact that the images need to be decompressed
and then processed. It is known that decompression is an overhead time-consuming op-
eration, that is not related to the final aim of the image investigation, so is clear that a
strong needing in development of compressed domain processing tools exist also for RS

imagery.

For these reasons in this thesis, it has been proposed and studied the effectiveness
of RS CBIR techniques based on JPEG compressed images. JPEG is a lossy compres-
sion standard widely used on internet, famous due to its good compression rate and image
quality. JPEG compression scheme is composed by a series of operation: image block par-
tition, block based Discrete Cosine Transform (DCT), that is a Fourier-related transform,
quantization and final entropy coding. Decompression chain is realized by performing in-
verse steps in inverse order, the critical and most time consuming operation is the inverse
DCT (IDCT) step, due to number of operation required. Taking in account this fact, in the
past years researchers and practitioners proposed and studied methods for manipulating
and/or extracting information without fully decompressing the image. Usually this result
is achieved by partially decompressing the image and then apply processing techniques
directly in DCT domain. JPEG-related compressed techniques and in general lossy com-
pression schemes are rarely used in RS data applications. In fact sometimes they are used
in compression systems mounted on-board of satellites, while in data-centers images are
stored with lossless compression techniques. However in geographic web-centric services
lossy techniques are widely used, as in the case of QL imagery, and, how it was proven
in [7-9], the analysis of lossy compressed products is an effective solution for resolving,
with acceptable efficiency, the problem of information retrieval from the massive RS EO
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archive.

The remaining part of the thesis is structured as follows. Chapter 2 gives an overview
of JPEG standard, in order to understand how the compression chain works, and intro-
duction to extracted features from compressed-domain image. Chapter 3 regards test of
proposed features in the context of basic k~-NN CBIR architecture. Chapter 4 explains how
to exploit this kind of features in a supervised CBIR environment. Chapter 5 shows the
benefits in terms of processing time of proposed descriptors. Finally, Chapter 6 presents
the conclusions of the methods proposed in this work.






Chapter 2

Related works

How already introduced in the first chapter, main goal of this thesis is to understand the
effectiveness of compressed domain features. Then before explaining proposed methods is
necessary to illustrate JPEG compression standard and give a review concerning principal
JPEG-based features. Thereafter bag of visual words representation and Multiple Kernel
Learning (MKL) with its correlated arguments are introduced.

2.1 JPEG Compression

JPEG standard is referred to a family of specifications that define encoding/decoding algo-
rithms for images and data-stream architecture for generating and describing compressed
data. The first version of JPEG, the so-called JPEG Baseline, was standardize in 1992 [11]
from the joint ISO/CCITT committee known as Joint Photographic Experts Group (JPEG).
JPEG compression standard were designed to be a generic algorithm to supports a broad
variety of applications and during the years become the most famous compression method
for grayscale and color still image, largerly due to its good compression performance and
image quality. From now on baseline JPEG is referred simply as JPEG and for sake of
simplicity only grayscale images are considered. The JPEG encoder consists of a for-
ward DCT transform step, a quantizer and a Huffman encoder. All components of en-
coder/decoder stage are feed with image patch large 8x8 pixels, so before starting the
compression procedure the image is splitted in non-overlapping 8x8 blocks and pixels’
value is subtracted by 128. Pre-processing steps are done in order to reduce size of final
coded image stream as much as possible. Blocks are analized from left to right, top to
bottom. Clearly decoding stages are done by the inverting operations and done in inverse
order. In the next subsections a explanation of each compression step is given.
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Figure 2.1: Block diagram of JPEG encoding process

2.1.1 Block Discrete Cosine Transform

The first stage of compression process is the conversion of each block from pixel domain
to DCT domain. Forward DCT transform estimates a total of 64 real-valued coefficients
from 8x8 block. Mathematically DCT transform is a lossless transform, but in real world,
due to limit number of bits, it is the first source of lossiness of JPEG compression chain.
Technically DCT is a Fourier-related transform, in fact is similar to the Discrete Fourier
Transform (DFT), except that involve only real numbers, therefore fast algorithms varia-
tions, like FFT, or other properties are in common to both. Mathematical description of
DCT trasform is given below:

Forward:
F(u,v) = a(u)a(v) Nzl Nzl f(x,y) cos {(29” ;]\})W] cos {(2y ;\})W} @.L1)
=0 b=
Inverse:
NZWZla )F(u,v) cos {(2“: ;\})M} cos {(23/ ;\})W} (2.1.2)
=0 =

V1/N ifu=0
and N = 8§

In which: a(u) =
9/N  ifu=1,2,..,N—1

From the above forward transform equation 2.1.1 is clear that pixels are expressend
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in terms of sum of cosine oscillating at various frequencies. In JPEG 64 orthogonal basis
are used and goes from frequency (0, 0) to frequency (7, 7). Generally frequency (0, 0) is
called DC component, because represent the mean pixel’s color, instead the other 63 coef-
ficients are called AC coefficients, because they express frequency behaviour, or texture
variation, of pixels.

e

EI-II:-III i II.5III

|
-
P
=
——

Figure 2.2: 8x8 DCT basis

DCT is used for compression scheme, because has the capabilities of concentrating
most of pixel energy in few coefficients, so shortly after transform fewer values with
smaller magnitude are stored, instead of 64 pixels with a larger bit-depth. Another impor-
tant property of DCT transform for compression purposes is the decorrelation of coefti-
cients, which means that coefficient can be optimally compressed.

2.1.2 Quantization

After DCT transform step, frequency coefficients are quantized in order to achieve an
higher compression rate. This step introduce a strong distortion and for this is the main
source of lossiness of the entire compression algorithm. Quantization consists in rounded
to the nearest integer division of DCT coefficients and could be more or less harsh in func-
tion of the quality factor (QF). JPEG standard does not specify how much a coefficient
should be scaled, then the so-called Quantization Matrix (QM), that is a 8 by 8 matrix
that contains all quantizer step-size parameters, is decided by the user and each coeffi-
cient is tuned by setting a QF. Specification indicates that quantizer step-size coefficient
could be any integer from 1 to 255. Since human visual system is very sensitive to small
distortions in low frequencies, rather than distorsions in higher frequencies, accordingly
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the optimal trade off between high compression rate and image quality preservation, that
means with ideally imperceptible visual artifacts, is achieved by a greater quantization of
high frequencies with respect to lower ones. Mathematically speaking each coefficients is
quantized by a linear quantizer, then the maximum distortion that can be reached is equal
to one half of quantizer step-size. Formally quantization is described as:

Fy(u,v) = round(SEZ: ZD (2.1.3)

Where Q(u, v) is a quantizer step-size coefficient and round() will round to the nearest
integer. Then reconstruction step follows the straight inverse operation:

F(u,v) = F,(u,v) x Q(u,v) (2.1.4)

In which F'(u, v) is the reconstructed coefficient. As already mentioned JPEG does not

specify a precise quantization table, but only range of possible value for the quantization

coefficients. Then design of quantization tables can be done either based on rate-distortion

theory, so by minimizing image visual distortion, or on human visual system characteris-
tics. An example of quantization table is given below:

Table 2.1: Example of quantization table

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

2.1.3 Huffman Encoding

After quantization step, in order to optimize as more as possible effectiveness of entropy
encoder, DC and AC coefficients are treated separately.

DC coefficients Encoding

Considering the fact that adjacent blocks have similar DC components, is straight to en-
code the difference between subsequent DC values instead their raw value independently.
So for obtaining the optimal compression of DC coefficients a predictive encoding ap-
proach is necessary. Mathematically the difference DI F'F' is defined as:
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DIFF = F,(0,0) — PRED

In which PRE D is the difference value of the previous block. Entropy coding is done
by means of the so-called Huffman Tables (HTs). HTs contain binary codes and class num-
bers that correspond to a specific DI F'F' magnitude value. Precisely DI F'F value, that
could be either positive or negative, is used to select a class, or category. Noticed that a
class correspond to a subset of possible D[ F'F values, so once the class is selected addi-
tional bits are added and they represent the exact value of DI F'F'. Below the two HTs for

DC components are shown:

Table 2.2: Category symbols and bit code

Category (CAT) Bit Code Word
00 00
01 010
02 011
03 100
04 101
05 110
06 1110
07 11110
08 111110
09 1111110
0A 11111110
0B 111111110

Each category of 2.2 specify how many additional bits are needed to encode DI F'F’

value. Additional bits stream are defined by the second HT.
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SSS | Size Additional Bits DC Value

00 |0 ~ 0

01 1 0,1 -1,1

02 2 00, 01, 10, 11 -3,-2,2,3

03 3 000, 001, 010, 011, 100, 101, 110, 111 -7,-6,-5,-4,4,5,6,7
04 4 0000,..., 0111, 1000,..., 1111 -15,...,-8, 8,...,15

05 5 0 0000,..., T 1111 -31,...,-16, 16,...,31

06 6 00 0000,..., 11 1111 -63,...,-32,32,...,63

07 7 000 0000,..., 111 1111 -127....,-64, 64,...,127
08 8 0000 0000,..., 1111 1111 -255,...,-128, 128,...,255
09 9 0 0000 0000,..., 1 1111 1111 -511,...,-256, 256,...,511
0A | 10 00 0000 0000,..., 11 1111 1111 -1023,...,-512, 512,...,1023
0B 11 000 0000 0000,..., 111 1111 1111 -2047,...,-1024, 1024,...,2047

Table 2.3: DC additional bits

Huffman tables were proposed as integrating part of JPEG standard, because they work
well in generic purpose environment, but is possible to define ab optimize version of these
tables by using Huffman’s algorithm on the specific image.

AC coefficients Encoding

While for encoding DC coefficients is necessary to exploit correlation between adjacent
blocks, for optimally encode AC coefficients is require to take advantage of the energy
distribution within DCT block. As already mentioned after quantization is highly probable
that most of the non-zero coefficients lie on the low frequencies basis. Therefore AC co-
efficients are reorganized taking into account of this property. JPEG standard reorganized
coefficients with a zig-zag order.
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How is clear from figure 2.3 final coefficients vector is formed by keeping near con-
tiguos low frequency coefficients, thus exploiting energy distribution after quantization
step. Now coefficients stream is encoded by means of Run-Length(RL) encoding tech-
nique. As for DC coefficients, also AC coefficients are encoded through two HT, but they
work in slightly different way. In this case most significat bits represent the run-length
of zeros between two non-zero coefficients, while least significat bits are reserved for en-
coding the magnitude of the non-zero coefficient that interrupts zeros sequence. As for
DC HTs, also tables of AC coefficients can be optimize in function of image content and
distribution.

Finally after encoding step data stream is enclosed in a structure delimeted by headers
that contains all the informations needed at decoding stage.

2.2 JPEG Compression for Remote Sensing Images

Usually RS applications need high quality data, in order to do reliable analysis on specific
characteristic of investigated scene. Therefore studies on RS imagery compressed in JPEG
format are few. In [12] different compression algorithms, including JPEG, have been
compared, to study the effects of compression on automatic land classification. Then
JPEG is used sometimes on board satellite compression system, in fact in [13] a partial list
of the compression algorithms used in different space missions is shown. Obviously JPEG
applied in space mission is severly limited due to image quality constraints. Then in [14]
JPEG and JPEG200 have been compared to study classification capabilities at different
compression rates. Also [15] follows the same direction, in which classification accuracy
is measured on JPEG compressed images at different compression ratios. More recently
JPEG was used also in the context of big data processing as in [7], in which a composite
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global scale image is produced by selecting cloud-free images from QL products. While
in [8] a cloud detection is tested on JPEG QL imjages of LANDSAT 7/ETM+ scenes.
In [9] an automatic image processing architecture based on JPEG compressed QL produts
is proposed and tested. Therefore recent trends indicate that JPEG is preferred in web
environment and working with web products, like QL, could become the standard method
for analyzing huge amount of data.

2.3 Image Description Methods on JPEG Compressed

Domain

The aim of present work is to propose and study the effectiveness of local features derived
from DCT domain that. JPEG related features were widely studied in field such as com-
puter vision, patter recognition and other, while don’t exist research or proposal in RS
topics. One of the first attempt of CBIR that exploits compressed-domain feature were
conduct by Shneier and Abdel-Mottaleb in 1996 [16] in which they divide DCT image in
some sub-images, or windows, and construct a kind of keys by averaging DCT coefficients
of each block across the window. For each pair of window present in the image, they per-
form the difference and if the magnitude is under a certain threshold value 0 is assigned,
otherwise 1. This results in a feature vector that is compared with other present in the
database by means of hamming distance. Lay and Guan in [17] exploit the low frequency
AC coefficients to build an histogram of the image and then retrieving performance are
measuring by means of L1 norm comparison. Shaefer in [18] employ the so-called DC
image to extract color histogram and texture feature with local binary pattern(LBP) opera-
tor, both color and texture histogram are compared with L1 norm. Method in [19] exploit
color information by extracting four mean colors, or DC values, of the 4x4 sub-block de-
rived from each 8x8 JPEG block, hence a color histogram is built among extracted DC
components. Feng and Jiang in [20] take advantage of a statistical analysis of block DCT
coefficients to roughtly estimate textural behavior, so two histograms are built using sub-
tle pixels mean and variance calculated in compressed domain. Eom and Choe in [21]
use an edge histogram detector in order to describe image content. The edge orientation
is determine by using the magnitude of low frequency coefficients, remember that low
frequency coefficients reflect directional texture behavior. In Lu, Li and Burkhardt [22]
color, texture and basic edge information is extract by combining various subset of DCT
coefficients. Then some efforts in [23] were done by reorganizing DCT coefficients of
all blocks in multiresolution fashion, as happens in wavelet rearrangement. Is worth of
mentioning also methods that exploit JPEG header information as in [24,25]. They based
recognition process by exploiting the so called optimize huffman and quantization tables,
that are made in function of image content. Another feature that is possible to extract from
DCT domain is the so-called Markov features [26], in which a transition probability ma-
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trix is constructed from the residual of the subtraction between coefficients. So basically
this features model the statistical coefficient behaviour of investigated area. Has shown in
literature, most of proposed features are derived by selecting some coefficient from each
block, so is natural to follow a similar approach to derive low-level features.

2.4 Remote Sensing Content-Based Image Retrieval Sys-

tems

Due to the rapid growth of data volume, CBIR become an essential tool for retrieve in-
formations from massive EO archive, for this reason interest of RS community for CBIR
systems has been increasing in the last years. Several low-level features have been inves-
tigated in CBIR applications, as intensity features [27-29], or shape features as in [30,31]
and texture features [32,33]. Different researchers proposed CBIR architectures in which
local features, as SIFT [34], are exploited [35]. In this last work SIFT is used in con-
junction with bag of visual word representation. In [36] a comparison between various
local features and global features has been conducted. In [37] a retrieval system is im-
plemented by means of morphological texture descriptors, used in the form of bag-of-
morphological-words representation. In [38] a local binary pattern(LBP) like feature is
proposed. Other methods are based on the user interaction, for example Schroder et al.
in [39] proposed a probabilistic framework for retrieval system based on interacting learn-
ing. Other feedback-based CBIR architectures are [40,41] or again [42]. The main prob-
lem of CBIR system is the so-called semantic gap, then in order to mitigate its effects re-
gion based model have been proposed, as in [43—46]. In these works both region attributes
and spatial relationship among regions are modelled. In [43] each image is partitioned in
regions, which properties are nmodelled as graph nodes and spatial relationships among
regions are represented as graph edges. In [44] first regions are formed by a pixel-based
classifiers jointly with a split-and-merge technique, then attributed relational graphs are
used to represent both the region information and their spatial relations. Semantic repre-
sentation extracted from low level features is exploited in [45]. In [46] regions of interest
are finded with maximally stable extremal regions(MSER) method, which selects highly
stable regions from all possible, then a graph is used to describe spatial arrangements.

In this work a CBIR system based on compressed features is proposed. Has shown
in JPEG compressed domain features literature, most of proposed features are derived
by selecting some coefficient from each block, so is natural to follow a similar approach
to derive low-level features. It is clear that due to embedded characteristics of the JPEG
compression standard, i.e. blocks image subdivision of limited size, it is straight to extract
local information.A widely used approach to exploit local features is to use the so-called
bag-og-visual-word(BOVW) representation. In RS there are many studies on this sub-
ject, for example in the context of recognition related problems, following some works

13



about it are listed. In [47] is applied to detect landslide, in [48] is used jointly with some
global features to perform scene classification on high spatial resolution imagery. In [49]
a multi BOVW representation derived from different features is used and is extended with
a feature significance score. In [50] a hierarchical coding approach is used and final rep-
resentation is made by means of Fisher coding step. In the context of scene classification
in [51] correlatons are used in order to integraete pixel homogeneity. In [52] an approxi-
mate earth movers distance is proposed in the framework of BOW based on SIFT features.
For integrating spatial and word distribution in [53] a spatial pyramid image subdivision
join to a co-occurence word measure is investigated. In [54] BOW is used with a com-
bination of various texture and spectral features for perform land use land cover(LULC)
mapping purposes. In order to estimate the best method for selecting interesting patches,
from witch to extract features, in [55] BOW is used. Always in the framework of scene
classification BOW is used [56] feature automatically learned directly from the image with
an unsupervised method. Another attempt for integrating spatial information in BOW
model is considered in [57], in which circular image portions are considered in aggrega-
tion step. In [58] a BOW representation based in the so-called pyramid of spatial relatons
is proposed, this method is proposed for integrating both absolute and relative spatial re-
lationships between local features. In [59] BOVW is compared with the so-called bag of
topics, that is a description method that take into account semantic informations. As is
clear from this short review, BOW became an important description method for perform-
ing discriminative analysis on RS imagery. The mathematical formalization of BOW,
or Bag-Of-Visual-Words(BOVW), or more generally Bag-Of-Features(BOF), representa-
tion. As BOW name suggests, this technique was initially developed in the context of
text and documents retrieval and further it was adapted to visual information. First visual
adaptation of BOW was proposed in [60]. BOW pipeline is composed by the following
steps:

1. First local low-level feature are extracted from image. Local features are a visual
representiation of a limited portion of the image. Famous features largerly used also
in RS are SIFT [34] and the respective dense sampling version [61] , HOG [62] and
others ...

2. The second step regards the individuation of a subset of prototypes learnt in the
feature space. Commonly unsupervised clustering methods as k& -means [63,64] or
¢ -means [65] are used. Collection of meaninful prototypes is called vocabulary,
while prototypes-self are called visual words, anchors, centers or atoms.

3. After definition of dictionary, low-level features are transformed in the so-called
mid-level representation. This process is called featurs coding and is introduced in
order to express each low-level descriptor with a combination of visual words.

4. Finally mid-level features are combined in order to obtain final image signature.
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Then this final representation is the feature that feed a classifier of a retrieval mod-
ule.

Every step of the BOW pipeline strongly affects final quality of image representation.
Therefore a particular attention must be give to the combination of techniques used in
each processing step for obtain positive results. In the following section a mathematical
formalization of features coding and pooling is given.

% I 1, YN f 1o DL b1 v, ,,<{(I>1”},-’\j]> wq X
{I“}”e-’\' ] | | | | _VL l {¢”}“F~\7: l—e— L l d’q ’l/Jz Lo
— J — | == | s(@) || —> |, >
‘#"%’ K \z/—.l o— > | r/—'l/ Yo

image  pq—p descriptors to pooling acts on rows of 7 concatenation
descriptors mid-level features \ac-¢  mid-level feature matrix® ;2o ¥ and a norm

Figure 2.4: Bag of visual words pipeline. Adapted from ”Comparison of mid-level feature
coding approaches and pooling strategies in visual concept detection”, by Piotr Koniusz,
Fei Yan, Krystian Mikolajczyk, 2013,Computer Vision and Image Understanding, Volume
117, Issue 5,479-492

Once visual dictionary is composed, is necessary to enclose low-level features in
the so-called visual vocabulary space. Let assume a feature vector &, € R such that
n =1,..., Nand N is the total number of features extracted from the image /. At that point
consider to have a visual vocabulary composed by K anchors, so avery visual atom is in-
dicated as m;, € RP. Therefore visual dictionary is described as a matrix M = {m,, }X_,
such that M € RP*X_ Then formalism for coding and pooling step is shown below:

T
(bn = |:(I)1n7 ceey q)Kn:|

Vne N (2.4.1)

= f(mm M)
Uy, = g(Pry) (2.4.2)
h=%/[¥|, (2.4.3)

Equation 2.4.1 represents the mapping from features space to the visual dictionary
space and f is the mapping function such that f : RP” — RX. Shortly it describes the
image contents in terms of visual words. Noticed that dictionary learning step is not in-
cluded in the mathematical analysis. Equation 2.4.2 is the mathematical formalization of
the pooling or aggregation step, that is the process in which mid-level features are quati-
fied. Last equation 2.4.3 represents the normalization of the image signature, that is useful
to preserve only the relative statistics of a specific visual words.

Aggregation step, namely equation 2.4.2 and 2.4.3, could be reformulate in order to
taking into account image spatial information. Precisely consider an image split in ()
partitions, then aggregation step could be generalized, by applying independently pooling
operation to each partition. Then aggregation equations are extended as follow:
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T
wq = [‘I’lqy ey \I/Kq] ) \I’kq = g({q)kn}neNq) ,Vg=1,...,Q (2.4.4)

h=h/IRl>.  h=[oT. . uh] (245)

In which NV, is the total number of subimage, while ¢ is the partition index. A famous
approach that exploit spatial subdivision of the image is Spatial Pyramid Matching(SPM)
[66]

For a in-depth review of feature coding and pooling methods, please refer to [67, 68]

2.5 Overview Multiple Kernel Learning Methods

Since the introduction of Support Vector Machine(SVM), the biggest problem is to choose
the kernel function that best fits the problem. Many successful kernel functions have been
proposed in the literature over the years, some times also enginnered for specific applica-
tions. Then the optimal selection of parameters in the kernel function is one of the deci-
sive elements for the proper functioning of the kernel-method used. A possible solution
to avoid the hard task of kernel selection is to combine multiple kernel functions together,
even if not necessarily optimized for the specific task. At this point the problem is to un-
derstand how to combine the various functions in order to increased as most as possible
final results. In recent years, a technique called multiple kernel learning(MKL) has been
proposed to solve the problem of the optimal combination of kernel functions. Aim of
MKL is to learn the weights to associated to a specific kernel depending on its importance
in relation to the final result. A straightforward approach to combine kernel functions is to
weighting and linearly combining them. Following formalism used in [69] let T{x;, y; } ",
be the training set amde up of n labeled featuressamples, where x; € R” is the i-th sample
associated with the binary class label y; € {+1, —1}. From this labeled samples, M basis
kernels { K1, K, . .., K, } are constructed, where K,,,(+, -) = (¢, (+), dm(+)) is the m-th
basis kernel associated to the so-called reproducing kernel Hilbert space(RKHHS) and is
specified with H,,. Then the linear combinantion of M kernel function is given by:

M
K.=)Y d.K, (2.5.1)
m=1

In which K, is the m-th kernel function and d,, is its associated weight. In MKL
framework exist various method to resoplve the problem of linear combination, for ex-
ample the easiest is to consider a fixel-rule MKL algorithm, for example by averaging to
the number of involved kernel function. The most effective method of using a MKL ap-
proach is to use an optimization algorithm, at this point there are two types of algorithms:
classifier-dependet or classifier-indipendent. In the first type of algorithms, kernel func-
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tion weights and classifier parameters are optimized simultaneously. Then the estimated
weights are used to construct the composite kernel and the final classifier is trained [70].
In turn, classifier-dependent algorithms are divided into two other categories: direct al-
gorithms or wrapper algorithms. In direct algorithms, the kernel weights and the SVM
parameters are directly estimatedthrough the optimaztion of the so-called primal ( or dual
) problem of the MKL. Depending on used direct MKL algorithm, primal or dual problem
is reformulated in function of the optimization strategy used. Machine learning literature
is rich of this type of reformulations, for example in [71] a primal problem is optimized
by means of semidefinite programming. The second type of classifier-dependent MKL
algorithm is the so-called wrapper algorithms. In this typology of algorithms a two-step
optimization procedure, to obtain the kernel weights and the SVM parameters, is used.
The first step consist in assign some initial values to the weights associated to the basis
kernels and then SVM parameters are solved. Then in the second step SVM parameters
are fixed to the values obtained in the initial step and then the SVM objective function is
optimized with respect to kernel weights. A powerful wrapper algorithm, also used in this
thesis, is the so called generalized MKL(GMKL) [72].

The other kind of algorithms are the so-called classifier-independent MKL algorithms,
which aims to model the target function independently from the used classifier. Then in
this typology of algorithms a simpler optimization method is used. Due to this semplifi-
cation, this kind of MKL algorithm can easily handle several kernels without difficulties.
Classifier-independent MKL algorithm are subdivided in: similarity-based algorithms,
generalization-error-based algorithms, subspace-based algorithms and heuristic MKL al-
gorithm.

The aim of similarity-based algorithms is to optimize the composite kernel function
with respect to a measure of similarity to a so-called target kernel. A famous similarity
measure for kernel function is the so-called kernel alignment(KA) investigate in [73],
which estimates the cosine angle between two kernels K, and K, by using:

<Kp7 K‘Z)F
VK, Kp) p (K, Ko) e

K A works exactly as the standard cosine similarity, the when is equal to 0, means

KA(K,, K,) =

(2.5.2)

that the operands are completely dissimilare, while if it is equal to 1 means that the two
involved kernel are completely similar.

One of the most recent development in MKL is the so-called Generalization error-
based MKL algorithm, in which weights learning is based on the minimization of the upper
bound of the leave-one-out error which is considered as the estimation of the expected
generalization error of the classifier [74].

Then there is the so-called subspace-based MKL algorithms in which the basis ker-
nel are initially reshape as vectors and then stacked in a matrix. Finally using a sbuspace
learning method a 1D subspace is learned. Then the kernel weights are represent by the
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projection of each vectorialized-kernel on to the learned 1D subspace. The first proposed
algorithm of this category of MKL methods was the so-called Representative MKL, pro-
posed in [75].

Finally last classifier-independent MKL algorithm type is the so-called heuristic MKL,
in which some heuristic rules are used to learn kernel weight. For example an easy heuris-
tic method exploit a cross-validation procedure, in which the weights are selected from a
predefiniteset of candidate values.

For the purposes of this thesis it is not necessary to go further, therefore please refer
to [76] for a complete theoretical view of MKL and for MKL RS applications to [69].
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Chapter 3

Considered Unsupervised Remote
Sensing Image Description Algorithm in
JPEG Compressed Domain

In this chapter an explanation about the unsupervised proposed setting is shown. Follow-
ing a general explanation is given, then proposed features are explained.

3.1 General Architecture

As already shown, JPEG-compressed features are considered as such when are extracted
from the DCT-coefficients image. Obviously in real application that means to perform a
partial decoding of JPEG image, in fact first step consists of applying Huffman decoding
to compressed image. Then a features extraction step takes place, in next paragraphs pro-
posed features are presented. Consider that each color band is compressed independently,
therefore feature extraction scheme is performed in every image band. Finally BOVW rep-
resentation is used to form final image signature. Concerning dictionary, visual atoms are
extracted from features database by means of standars k-means algorithm [63,64]. Then
coding step is applied and in this work method proposed in [60] is followed, therefore
so-called hard assignment is applied.

As is shown in figure 3.1 hard assignment associates features, in this case represents
by green triangle, to the nearest visual word. Is clear that hard quantization is the sim-
plest approach to apply, but has also the biggest loss of information. Below mathematical
formalization of hard assignment is given:

¢ = argmin||z, — M|;
@ ) (3.1.1)
stlply=1,¢ € {0,117
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Figure 3.1: Visualization of Hard assignment process

Equation 3.1.1 means that every descriptor x,, € X, which X is the set of all image de-
scriptors, is assigned to its nearest cluster with activation function equal to 1. Always
following seminal work [60], after each image features is descripted in the visual dictio-
nary space an average pooling step is applied. Average pooling, or simply sum pooling,
counts all occurences of some visual word m, in the image and normalizes such counts
by the total number of coded descriptors in the image. Formally:

hy, = avg({Pen } nenr)
B 1 (3.1.2)

neN

In equation 3.1.2 set V refers to the total number of features present in the image and k is
the k-th word of dictionary M.
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3.2 Dominant Features

As mentioned in section 2.1.1 DCT transform concentrates most of energy in few low
frequency coefficients. For this reason in [77] have been proposed features that take into
account only DCT low frequency coefficients. Precisely five coefficients of each direction
and DC value were taken as block local features. Thus inspiring by [77] from every color
band these features are taken and then concatenated. In the image 3.2 below, extracted
features are shown:

DC vi v2 v4

H1 B8 va vs

Figure 3.2: Extracted features from DCT blocks of each color band

In image 3.2, Hi coefficients are the horizontal edge/texture information, V' coeffi-
cients are the vertical edge/texture information, D7 coefficients are the diagonal edge/texture
information and DC' is the mean color of 8-by-8 image patch. After coefficients extrac-
tion, features vector with same type of information but different color band are concate-
nated, to forming final representation of a particolar block.

HR = [le; - 7H5r] HG = [ngv .- -7H5g] HB = [HIZN cee 7H5b]
VR = [‘/lra .. '7‘/51”] VG == [‘/lgw . 'a‘/:’)g] VB = [‘/lba .. '7‘/517] (321)
Dgr = [Diy,...,Ds.] Dg = [D1g, ..., Dsg] Dp = [Duy, . .., Dsy)

DC = [DCg, DCg, DC]
H = [Hp, He, Hy) (3.2.2)
V = [Va, Ve, Vsl
D = [Dg, D¢, Dg]

Equations 3.2.2 are the final local feature vectors extracted from every DCT block. In
the proposed architecture features are merge by performing fusion at representation level,
that means that BOVW chain is applied independently to each kind of features and finally
aggregation histograms are simply concatenated together.

Formally final image signature is obtained by:
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Figure 3.3: Representation level fusion illustration. Adapted from "Bag of visual words
and fusion methods for action recognition: Comprehensive study and good practice”, by
Xiaojiang Peng, Limin Wang, Xingxing Wang, Yu Qiao, 2016, Computer Vision and Im-
age Understanding, Volume 150, 109-125

Ppe = f(DC, Mpc) Ype = g(Ppe) (3.2.3)
Sy = f(H,Mp) Yy = g(Px) (3.2.4)
Oy = (V. My) ¥y = g(Pv) (3.2.5)
®p = f(D,Mp) ¥p = g(®p) (3.2.6)

h=

L—

\I]DC7 \IjHu ‘I;VJ \IID] (327)

At the end of BOVW process final image signature is given by h, that is £, normalized
version of h.

3.3 Statistics from Dominant Features

An other considered local features extracted from blocks could be some statistics of co-
efficient, so in present work inspiring by [78], second central moment and fourth order
moment are taken from features vectors proposed in the previous section described by the
equations 3.2.1. Only these central moments are taken because during the experiments
result to be the most informative statistics to extract from the features, while other central
order moments result to affect negatively on the final performances of the system. Then
features are the statistics extract from each band, followed by a concatenation:
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Hyurr = [var(Hyy, . .., Hsp )| Heurir = [kurt )
Hyorg = [var(Hyg, . . H5g)] Hyurig = [kurt )
Hyorp = [var(Huyy, . .., Hsp)| Hywren = [kurt(Hay, . .., Hyp)
Voarr = [var(Viy, ..., V)] Veurer = [kurt(Vay, ..., Vs,)
Voarc = [var(Vig, ..., Vig)] Viurta = [kurt(Vig, ..., Vsg)
Viare = [var(Vip, - . ., V)] Viwrtp = [kurt(Vig, . .., Vip)
Dyarr = [var(Dsy, ..., Ds;)| Digurir = [kurt(Dyy, ..., Ds,)
Dyore = [var(Day, . .., Dsy)| Diurte = [kurt(Dag, . .., Dsg)
)

)
]
]
]
] (3.3.1)
]
]
]
Dyarp = [var(Day, . .., Dsp)] Dyurin = [kurt(Dap, . .., Dsp)]

DC = [DCy, DCg, DCj]
H = [Hyarr, Hrurtr, Hoarc; Hiurtcs HoarBy Hiuris] (3.3.2)
V' = Vaarr: Vaurtrs Voarcs Viurtas Voar B, Vieurts]
D = [Dyarr; Diurtrs DvarGs Diurtcs DvarB, Diurts)

Then as in the case of the so-called dominant features, multiple BOVW streams are
implemented for forming final image representation. As before in feature coding step hard
assignment 3.1.1 is used and average pooling 3.1.2 is used in aggregation step.

Ppo = f(DC, Mpc) ¥Ype = g(Ppe) (3.3.3)
by = f(H,Mp) Yy = g(Pg) (3.3.4)
Py = f(V,My) Uy = g(dv) (3.3.5)
&p = f(D,Mp)¥p =g(Pp) (3.3.6)
h— [\I/Dc, Uy Uy, \IID] (3.3.7)

3.4 Spatial Pyramid Matching for Local JPEG-based Fea-

tures

Main problem of BOVW representation is that the spatial distribution of visual atoms is
not considered. This is could be a problem when different images with similar words,
but with different distribution, are compared. In computer vision and pattern recogni-
tion literature many approaches were proposed and one of the first effective attempt that
were proposed was Spatial Pyramid Matching(SPM) [66]. Then instead of integrating
spatial information in the low-level image descriptors, by considering for example geo-
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metric clues around low-level features, is considered at comparison level, by dividing the
image in spatial bins. Foundamental idea behind SPM is to partition the image into a se-
quence of increasingly coarser grids and then compute a weighted sum over the distances
of aggregated representations.

level 0 level 1 level 2
™ o ™ ) ° +
< R + <& + < . + < + <& R + < +
< + ° < + ° < + L]
+,° + . +, %+ ° te ®| + *
o + 0. + e o  + <>. + e o |+ <>. + e
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Figure 3.4: Example of spatial binning with relative weight. Adapted from "Beyond Bags
of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories”, by
S. Lazebnik, C. Schmid and J. Ponce,2006, 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’06), pp. 2169-2178

Spatial pyramid matching is consider an absolute spatial arrangement of the visual
words, because two visual words of different images match only if they fall in the same
spatial bin. Specifically suppose to partition image into a sequence of spatial grids at reso-
lutions 0, . . ., L such that the grid at level [ is comprehensive of 4! spatial bins. Then from
each spatial bin an aggregation step is performed and compared with the aggragated fea-
tures form of the same spatial bin of the other image. Finally this comparison is weighted
in function of the resolution level [, precisely is equal to %, which is inversely propor-
tional to the cell size and thus penalizes matches found in larger cells. The main problem
of SPM is the features dimensionality, in fact all spatial bins of a resolution grids are con-
catenated together, to be precise for a dictionary of length M and L resolution level, final
histogram representation has a length equal to M Zl]\io 4L,

3.5 Markov features

Always following the idea to include spatial information, in the present work has been
studied the possibility to extract a statistical model from image regions and encode sta-
tistical description in terms of BOW representation. An approach to extract statistics be-
haviour from DCT coefficients image is the so-called Markov features [26, 79]. Aim of
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Markov features is to capture the correlation among close DCT coefficients belonging
to the same block and also relationships between coefficients wit hthe same frequency
but belonging to adjacent JPEG blocks. Basically coefficients relationships are modelled
through a Markovian process, that is defined by the so-called empirical transition probabil-
ity matrix. A transition matrix element enclose the information about the probability that
certain coefficient magnitude is surrounded to a coefficient with some magnitude. Obvi-
ously if DCT coefficients are taken as they are value range is huge, then in order to cover
each transition case a N x N matrix should be use, in which NV is equal to the number
of possible values that can assume each coefficient. Therefore before to starting to ex-
tract transition matrix is necessary to derive a residual DCT coefficients image. To derive
residual image is necessary to exploit locality principle, that states that adjacent element
in images are correlated in some measure, so differentiation between close coefficients in
some direction has to take in place.

Horizontal
Image or BDCT 2-D Array Difference 2-D Array
(Magnitude)

(a) Horizontal differentiation

— Vertical
Image or BDCT 2-D Array Difference 2-D Array
(Magnitude) ‘ '

(b) Vertical differentiation

Figure 3.5: Derivation of residual DCT coefficients image. Adapted from “’Digital image
splicing detection based on Markov features in DCT and DWT domain”, by Zhongwei He,
Wei Lu, Wei Sun, Jiwu Huang, 2012, Pattern Recognition, Volume 45, Issue 12, 4292-4299

In present work residual images have been derived by taking differentiation in hor-
izontal and vertical direction, either for capture intra-block and inter-block correlation.
Mathematically speaking intra-block and inter-block difference array are derived as fol-
low:

25



F(u,v) — F(u,v+1)  Rinter, (u,v) = F(u,v) — F(u,v+38) 351
F(u,v) — F(u+ 1,v)  Rinter, (u,v) = F(u,v) — F(u + 8,v) G.3.1)

Rintrah (U, U)
Rintrav (u, U)

Then the transition matrix calculation takes place, but before starting with this step
is necessary to limit the residual values, because it was proven that most of remaining
magnitudes remains inside a limited collection of values. Therefore a threshold 7" is in-
troduced:

T ifR.>T
R, = (3.5.2)
T  ifR.<-T

Consequently transition matrix has cardinality equal to |7| = (27 + 1) x (2T +
1). From each residual image R, two transition probability matrix are extracted, one
for horizontal direction transition and one for vertical direction transition. Following is
illustrated the derivation of probability transitions:

Ziuzl 5112 5(R7Lntrah (U, U) = i, Rintrah (U, (Y ‘|‘ 1) - ])

Tintrna (1) = SRy (1.0) = ) >3
ZSu ! ZSU 1 ( intray, (U, U) = 7:7 Rintrah (U + 17 U) = ])
sS4
Zntrahv (Z ]) 5(Rintrah (u’ /U) _ /L) (3 5 )
Zsu ' ZSU to d(Rintra, (4, v) = 1, Rintra, (u,v + 1) = j)
T (80) 2 (Bt (1,0) = ) e
Su—2 S . .
u v = . 1 =
Tintraun (i, §) = Z Z 5( intray, (ua v) =1, Riptra, (v +1,0) ]) (3.5.6)

6(Rint7“av (u> U) = Z)

In which S, and S, are respectively number of row and number of column of the
original DCT coefficients image and d(e) is dirac delta operation, then 6(e) = 1 if and
only if arguments are satisfied, otherwise d(e) = 0.

Zu 1 Z ° 16 ( intery, (U, U) = i7 Rinterh(uav + 8) = j)

ﬁnterhh <Z7]> = 5(Rm,te7~h (U U) — ’l) (357)
Z Z - 18 O(Rinter, (w,v) = @, Ringer,, (u + 8,v) = j)
o= 5.8
Znterhv (Z .]) 5(R7,nterh (U U) o Z) (3 )
Z Z U185( inter, (U, V) = i, Rinter, (u,v + 8) = j)
O = L 3.5.
Zntemh (Z ]) 5(R1nte7»v (U, U) _ Z) ( 9)
$u—16 S, A i .
Znterw (Z,]) _ Zu:1 Zv:l 5(Rmte7"v (ua U) 2, Rznterv (U + 87 U) ]) (3510)

5(Rint6rv (U, U) = Z)
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As before S, S, and §(e) have the same meaning.Then from each investigated area
four transition matrix 7 are extracted for describing intra-block correlation and other four
transition matrix 7 are extracted for describing inter-block relationships. Final feature
vector are the vectorialized transition matrix. Usually this kind of features are extracted
for representing the whole images, but here are extracted from partial overlapped image
patches in order to characterize a group of DCT blocks. Therefore at the end an image will
be represented by a number of intra-block and inter-block correlation vectors coming from
each image patches of every color band, in that case RGB. Once all features are extracted
two dictionary are constructed, one for intra-block transition probability vectors and the
other for inter-block features. While the aggregation step is done independetly for each
color band. Below mathematical formalization is given:

zntra f( INtray MRint'ra* )

(3.5.11)

Rinter. = | ( Znt@?”*7MRznter*)
YRiirar = 9 PRinrarn) YRinsern = 9(PRinier. ) (3.5.12)
Y Rinirac = 9(PRiirac) YRintre = 9I(PRier. ) (3.5.13)
Rinran = 9(PRintra. ) YRiniers = 9(PRiper, ) (3.5.14)
h = [‘I’RW-W U Rinterrr Y Rintracr Y Rintercr Y Rineran s ¥ Rinters (3.5.15)

Actually more complex relationships coming from different direction at different dis-
tance or even correlations between coefficients of different band could be used but the
feature extraction time would grow too much, without adding noticeable benefits to the
retrieving results.
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Chapter 4

Proposed Query Sensitive Feature
Weighting Algorithm in JPEG
Compressed Domain

4.1 General Architecture

So far, the features have been fused at mid-level representation, i.e. at the level of the
BOVW representation, and then comparing without being weighed, therefore without val-
orizing the information provided by each features. It is therefore natural to emphasize the
features in function of the visual clues of the query image and then fuse this at the level
of this new features representation. To do this an MKL approach is applied, precisely for
each features is associated to a basis kernel and then a weight is used to valorizing the
visual importance of each features in the final image representation. Then a substantial
change in the retrieving architecture is applied. First big difference respect proposed un-
supervised retrieval system 3 is the shift to a supervised method, in this case the natural
choice for supervised kernel method to be used falls on support vector machine(SVM).
Second big difference respect before is that retrieval image problem becomes a binary
problem, in which the retrieved images by the system are those more distant from the hy-
perplane. It is modelled as a binary problem in the sense that images that are on the same
side of the hyperplane of query image are considered retrieved image, while the other are
discarded. A rough viaul representation of the system is given in figure 4.1

4.2 Proposed Feature Weighting Method

Consider to have a set of histogram-based fearures f so that f; € F', the aim of this new
architecture is to valorize the importance of each feature respect the content of image,
so assuming to have a step in which a MKL algorithm is involved to learn the weight to
assign to each image signature, then feature weighting problem become the follow:
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M=

K.=S d,K, 4.2.1)

m=1

In which m is the m-th selected histogram based features associate to a specific kind of
features and K is the used kernel basis. To make sure that the retrieving algorithm priori-
tizes the most relevant visual clues of the query image during the relevant image recovery
process, the query image must be inserted into the training set used to find the optimal
set of weights. Therefore when the query image I, is selected, a training set including
the I, is defined. In this thesis a classifier-based MKL algorithm is used, because they
generally approach best results respect other algorithms, bbut the proposed architecture is
not constrained by the chosen MKL algorithm. In present work the so-called generalized
MKL(GMKL) proposed in [72] is used. GMKL is also used because results to be more
flexible respect to other classifier-based algorithm, e.g. SimpleMKL [80]. Given that
histogram-based image representations are used the natural choice for the basis kernel is
the x? kernel, that is shown below.

N
ke (2, ) = 2 Zl xxfy (42.2)

GMKL algorithm is a classifier-dependent MKL, that is the family of MKL algorithms
that jointly learn the classifier paramenters and the kernel weights by minimizing the SVM
classifier error. Let T{x;, y; }" , be the training set amde up of n labeled featuressamples,
where x; € RP is the i-th sample associated with the binary class label y; € {+1, —1}.
From this labeled samples, M basis kernels { K, K, ..., K} are constructed. Each
basis kernel is associated to the so-called reproducing kernel Hilbert space(RKHHS) and is
specified with H,,. Then in to minimizing SVM classification error, classifier-dependent
MKL adopts objective function of the SVM trained usign the composite kernel on the
RKHS of H. as the target function. Then the primal problem of the MKL is written as
follows:

(1 -
argbr;n;l <§Hw|]§{6 +C Z 51-) (4.2.3)
w,0:54 i=1

M
st y(z VdmwT b, () + b) >1-§6Vi=1,...,n (4.2.4)
m=1

§&=>0Vi=1,....n (4.2.5)
deA (4.2.6)

Where A is the norm regularization of kernel weights and can be Al, A2 or Ap. C'is a
positive regularization parameter that controls the tradeoff between generalization of the
classifier and the training error &; and b is the bias term. This problem can be resolved
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by substituting w,,, with w,,,/+/d,,, then by following [80] a min-max problem is taken
as dual problem. In GMKL algorithm, which is part of the wrapper algorithm family, an
added regularization term €2(d) makes the dual problem become as follows:

1
argmin o, (1Ta - é(a oy) K .(d)(axoy) + Q(d)) (4.2.7)
d
sty Yy ay; =0 (4.2.8)
i=1
0<a,<CVi=1,....n (4.2.9)
d;>0vi=1,... M (4.2.10)

Assuming that the combination function and the regularization term are differentiable
functions of the kernel weights, gradient desccendant method can be used to obtain the
oprimal kernel weights. After that features are weighted and combined a final representa-
tion of the query image is embedded in the final composite kernel. At that point learned
weighted composite kernel K. is used in conjunction with an SVM, that through its disc-
rimant function the system is able to divides archive image set in retrieved images, that are
the images that have similar signature to the query, and discarted images, that are the im-
ages not similar to the query. At the end £ most distant images from the SVM hyperplane
are selected as retrieved image.
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Figure 4.1: Proposed Query Sensitive Feature Weighting architecture
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Chapter 5

Experimental Results

5.1 Dataset Description and Design of Experiments

To evaluate retrieving capabilities of proposed features, experiments were performed on
the UC MERCED LULC dataset, proposed in [81]. Archive contains 2100 images manu-
ally extracted from the USGS National Map Urban Area Imagery collection, with size of
256x256 pixels and a spatial resolution of 1 feet, that is approximately 30.48 cm. Original
archive were subdivided in 21 categories, that are: agricultural, airplane, baseball dia-
mond, beach,buildings, chaparral, dense residential, forest, freeway, golf course, harbor,
intersection,medium residential, mobile home park, overpass, parking lot, river, runway,
sparse residential, storage tanks and tennis court. It is clear that this archive has two lim-
itations to take into account in case of testing a CBIR system, first one is about archive’s
size, in fact in real applications more images are used. Thus, the impact of the results
presented should be properly rescaled when larger archives are considered. Second limi-
tation concerns the use of single-label annotation. Therefore in this work, to resolve this
second limitation of the archive, were decided to follow the multi-label extention of [82].
Multi-label extention is mandatory to make reliable performance measurements of a CBIR
system, in fact aim of retrieval system is to recover images that share visual clues with the
query images, therefore this approach suite better the CBIR paradigm. The total number
of considered multi-labels is 17 and they are airplane, bare soil, buildings, cars, chaparral,
court, dock, field, grass, mobile home, pavement, sand, sea, ship, tanks, trees and water.
Always following [82], the labels associated with each image varies between 1 and 7. In
table 5.1 are shown what primitive class is possible to find inside images of single-label
annotated subset. Finally in figures 5.1 some sample from each single label category is
shown. Before to start the experiments, all images in the archive are converted from the
original .zif format to .jpeg, through standard text M ATLAB® imwrite function with a
quality factor () = 100. In order to apply the proposed architectures, each color band is
compressed independently. As already mentioned all the experiments have been done in
text M AT LAB® 2017b environment, conducted on a machine equipped with Windows

33



10 Pro 64-bit with regard the OS, while as regards hardware, testing machine is equipped
with a processor textIntel®Xeon® CPU E5-1650v2 with clock speed of 3.50GHz and
a 16.0GB of memory. To extract DCT coefficients directly from the .jpeg compressed
file JPEG Matlab toolbox created by [83] has been used. Finally the other external li-
brary used during the experiments of supervised proposed method is the famous LIBSVM
created by [84].

Table 5.1: Multi-labels distribution respect original annotation

Category labels Associated multi-labels

agricultural field, trees

airplane airplane, pavement, grass, buildings, cars

baseball diamond bare soil, pavement, grass, trees, buildings

beach sea, sand, trees

buildings buildings, pavement, trees, cars

chaparral sand, chaparral

dense residential buildings, pavement, trees, cars

forest trees, bare soil

freeway pavement, cars, grass, trees, bare soil

golf course grass, trees, bare soil

harbor ship, dock, water

intersection pavement, bare soil, cars, buildings, grass

medium residential buildings, cars, trees, grass, pavement, bare
soil

mobile home park mobile home, pavement, cars, trees, bare soil

overpass pavement, cars, bare soil, grass, trees

parking lot cars, pavement, bare soil, grass

river water, trees, bare soil

runway pavement, grass, bare soil

sparse residential buildings, grass, bare soil, trees, sand, cha-
parral

storage tanks tanks, bare soil, grass, pavement, buildings

tennis court court, grass, trees, pavement, buildings
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In table below 5.2 shows distribution, in terms of number of images, of each primitive
class.

Table 5.2: Number of images associated to each promitive label

Category labels | Number of image
airplane 100
bare soil 627

buildings 695
cars 884
chaparral 118
court 105
dock 100
field 106
grass 978
mobile home 102
pavement 1302
sand 389
sea 100
ship 102
tanks 100
trees 1015
water 203
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chaparral

sparse residential storage tanks tennis court

Figure 5.1: Some examples with original annotation
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In the first series of experiments proposed features were tested on a CBIR system
equipped with a k&-NN module [85] for retrieving the most similar images for the system
perspective.

FEATURES BOVW
EXTRACTION > | REPRESENTATION

L
@_’

FEATURES BOVW
EXTRACTION > | REPRESENTATION

Figure 5.2: Illustration of used CBIR system

As explained before, in this thesis a multi-label approach has been adopted, then the
metrics used to evaluate the performances of proposed method is the average recall. In
order to define the recall, let L, C L be the set of class labels present in the retrieved
image X, € X retrieved, where X retrieved is the subset of retrieved images. Similarly,
let L, C L be the set of class labels present in X,. Recall is defined as follows:

‘Xretrievedl

1 |L,NL,|
Recall = —— I [ 2rl (5.1.1)
| Xretmevedl ; |Lq|

In which operator |e| stands for set cardinality. Finally overall average recall is given
by averaging mean recall of all query images. For retrieving similar images from the
archive is necessary to define a similarity or distance measure, in this thesis y2-distance
is used, because is one of standard distance measure used to do histogram comparisons.

(2 — yi)?
2(z,y) = Aol LV 512
X (7, y) ;:1 o (5.1.2)

In which x and y are the image signature of query image and retrieving image. It
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is worth of noticing that y?-distance is bin-to-bin distance measure, then correlations
among bins have not been take in consideration. In this series of experiments it was
studied the sensitivity of retrieving performance to the dictionary-size. Has already ex-
plained in 3 final image signature is given by a multi-dictionary BOVW representation,
then following dictionary-lengths refer to the size of a single dictionary and they are
50,100,200,300,400,500,600,1000. In all experiments 20 images are retrieved from the
archive.

While in the second part of the experiments the proposed supervised retrieving method
is used 4. Then in this series of tests there is a substantial change of methodology for
image retrieval. First big difference respect other experiments is the used of a supervised
method, as already explained an SVM approach is used. Second big differece respect first
part of experiments is the shift from multi-label to single-label paradigm, then from here
onwards original label set is considered. In these experiments following version of >
kernel is used:

N
TilYi

kxz(x,y):2§ p—— (5.1.3)
— T+ yi

Then for each features a y* kernel is associated, since the tests were carried out on the
dominant features 3.2 means that only four basis kernel are used.

K.=0pc - Kpc+Buy-Kuy+p8v-Ky+p8p-Kp (5.1.4)

In order to implement the system for each single label class a training set 7" is formed
offline, that means that 21 training sets are fixed from the beginning. Then query image
is added to the training set belonging on the same class and the process of MKL training
begins. At the end the 20 images more distant from the hyperplane are considered right
retrieved images. In order to measure the effectiveness of the proposed architecture, recall
measure has been used and to understand the behaviour of MKL various size of training
set were tested. Then as before recall measure 1s defined as:

‘X’r‘etrieved |

1 IL,NL,|
Recall = ——— Lol Bl (5.1.5)
| Xretmeved| ; |Lq|

But that time is refers to a single-label measure.

All test were conduct only on dominant features with a dictionary length of 100 and
20 images are retrieved in order to measure the system performances.
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Figure 5.3: Multi-dictionary intra single label dominant features average recall

5.2 Experimental Results of the Considered Unsupervised
Descriptors

5.2.1 Results of Dominant Features

In this kind of features four dictionary are used, that means that the total length of image
signature is four times dictionar-size. In graph below 5.6 is depicted the intra-single-class
average recall in function of dictionary length.

That which is coming to light is that images under the single label agricultural have
the worst results, while images such as chaparall and forest reach best retrieving percent-
age. This is related to the strong directional component of agricultural images, in fact the
proposed features do not take into account the visual importance of one direction rather
than another and therefore the retrieving method confuses with images with a high tex-
ture activity such as forest. Most of the time the confusion concerns only natural images
because the color features, aka DC value, directs the retrieving to the images containing
natural scenes. Below 5.5 some examples of single-label class buildings images retrieving
is given and as before the images are confused with others with similar texture activity and
similar range of colors. In figure 5.6 average multi-class recall is given in function to the
dictionary size, as is shown multi-labels performance remains stable during the course of
all experiments with this setting.
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Figure 5.4: Example of retrieved agricultural images
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Figure 5.6: Dominant features multi-dictionary representation average recall
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(18)

Figure 5.5: Example of retrieved buildings images

5.2.2 Results of Statistical Features

As in the previous experiments with dominant features four dictionaries are involved. In
figure 5.7 is possible to see that agricultural single-label class still has the worst results,
but that time beach single-label class average recall dramatically decrease. This has to
do with the fact that the coefficients statistics suppress the frequency location information
carried by individual coefficients, in fact it is impossible to determine a preferred single-
label class of confusion, that means that confusion happens with images coming from very
different classes. another reason is that the sea primitive class is only present in this kind of
single-label class and the is not modelled properly during the clustering operation perform
to create dictionaries.

But in general, as is shown in 5.8, in other cases retriving works quite well. In fig-
ure 5.10 the average measure of multi-class recall is presented, as it is straightforward to
see, linear behaviour along the whole experiment can also be affirmed in this case, but
differently from before the average is less than a few percentage points. The advantage of
this feature compared to the previous one is that at low-level has a lower dimensionality,
due to the fact is composed only by two statistics for each colo band and therefore the
dictionaries can be built faster.
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Figure 5.7: Multi-dictionary intra single label statistical features average recall
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Figure 5.8: Example of retrieved overpass images
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Figure 5.9: Example of retrieved agricultural images
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Figure 5.10: Statistical features multi-dictionary representation average recall
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5.2.3 Results of Dominant Features with SPM Comparison

As already mentioned in 3.4, SPM is neither a features nor an alternative to BOVW rep-
resentation, but is only a method to make a comparison between BOVW histogram-based
image signatures. One of the main problems with SPM used in combination with £-NN is
the so called curse of dimensionality, caused by the length of final representation obtained
by comparing efatures with this algorithm. In fact with this testing architecture, results are
evidently lower compared to the previous outcomes. It is worth of noticing that in 5.11 for
some single-label classes there is an high sensibility to the dictionary size such as beach
or buildings.Spatial pyramid matching is used only with dominant features, because they
have proved to be more performing.

Intra-single label class average recall
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& & & &€ &£
&
——50 100 200 300 —e—400 —e—500 —e=—600 =—e—1000

Figure 5.11: Multi-dictionary intra single label statistical features average recall

As shown in figures 5.13 retrieving of high textural natural images remains unchanged,
while for other classes sometimes the confusion made in the first twenty retrieved images
could be high as in 5.12. In figure 5.14 it is noticeable that as the dimensionality of the
BOVW representations increases, the result decreases continuously and this is a clear
effect of curse of dimensionality with a £-NN retrieval method.
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Figure 5.12: Example of retrieved buildings images

(1)

(2) (3) (4) (5)

(17) (18) 19) (20)

Figure 5.13: Example of retrieved forest images
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Figure 5.14: Average recall in function of dictionary length
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5.2.4 Results of Markov Features

Also in that case a multi-dictionary approach is used, then final image representation is
made by concatenating aggregated mid-level features coming from different band and
different features. Then at the end 6 histogram-base representation are joined together.
From figure 5.15 is possible that these features are not too sensitive to the different lengths
of the dictionary, except for single-label class chaparall, which is very variable. In this case
the worst results are held by singkle-label class river.

As is possible to see in figures 5.17 and 5.16 in average this features work quite well,
but only if the dimensionality of the BOV W-representations remains limited. In fact in
5.18 is possible to see that after dictionary length 600 average recall start to decrease.

5.2.5 Comparison of Considered Features

This final section show all result depicted on the same graph at the same scale. As previ-
ously said dominat feature and statistical feature remain stable along all the experiments in
function to different dictionary sizes, while the worst results are held by SPM and markov
features. As closing note is possible to se that after a dictionary length of 600 SPM start
tto decrease more fastly compared to Markov-base features.

Intra-single label class average recall
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Figure 5.15: Multi-dictionary intra single label statistical features average recall

47



(18)

Figure 5.16: Example of retrieved intersection images
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Figure 5.17: Example of retrieved golf course images
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Figure 5.19: Average recall of all descriptors
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5.3 Experimental Results of Proposed Query Sensitive
Feature Weighting Algorithm

In table 5.3 is illustrated the average signle label recall against size of training set, in which
first value o /- indicates how many image in training set are representative of query class,
while second value - /e is the number of how many images are taken from each class to
forming the against class in the training set.

Table 5.3: Average recall in function of training set

Recall 25/2 | 25/5 | 25/10 | 25/15
SVM 73.75 | 79.81 | 81.49 | 85.06
MKL +SVM | 75.80 | 81.63 | 83.85 | 87.90

While table 5.4 represents the mean accuracy in percentage of scene recognition on the
entire database, so that measures the accuracy of the system to recognize correctly query
class in the whole database. Then is obvious that by incrementing number of training
sample in the against class, the learned hyperplane starts to include in the query side also
a large number of images belonging to other single-label classes.

Table 5.4: Average scene recognition accuracy in function of training set

Scene accuracy | 25/2 | 25/5 | 25/10 | 25/15
SVM 82.18 | 74.20 | 70.32 | 64.95
MKL + SVM | 83.87 | 75.83 | 71.70 | 66.76

Following some visual results are given, as before are shown the first 5 ranked images
and the lasts 5 of the retrieved image set.

In this series of experiments benefits of MKL on final retrieval performances are clear,
but on the other hand, considering how system was implement, i.e. simply include the
query image in a training set depending on its class and then training, is a time costing
operation. In order to weighting in real time query features is necessary to boost this part
of the process.

5.4 Computational Complexity Analysis

The main motivation behind this study is concerning the advantage of extracting and ma-
nipulating images directly in DCT domain. This fact was clear from the very beginning
of the JPEG images processing “era”, for example already in 1993 in [86] was stated that
manipulating images in compressed domain, yielding performance 50 to 100 times than
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Figure 5.21: Example of retrieved harbor images

pixel based manipulaltion algorithms. Further think about the fact that fast DCT imple-
mentation studied by E. Feig and S. Winograd in [87] involve 94 multiplication and 454
addition/subtraction for each block. For example in this work each image is subdivided in
1024 blocks, therefore is evident that overhead operations, as decompression, in a massive
database have a huge impact. So decompression time is a way to measure the advantages
of partial decompression among fully image decompression in a real-world system. Then
in this experiment average time of whole archive has been taken. In algorithm 1 all op-
erations are shown. At beginning, through JPEG matlab toolbox function jpeg read(e),
DCT coefticients are derived for each color band, at this point time for partial decompres-
sion is taken. It is straightful that proposed features can be already extracted, for example
dominant features 3.2 does not need overhead time to be extracted. Partial decompression
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is over, while for full-decompression 2D IDCT is needed, in that case standard matlab
implementation is used. Dequantization step is not needed, because in the experiments
images have been compressed with a Q-factor equal to 100, that means that quantization
table is depicted in table 5.6.

To have a reliable time measure, experiment has been run for 100 times and finally all
average values were averaged in turn. Final results are given in the following table:

Table 5.5: Decompression time results

Partial decompression Full decompression

0.0016 s 0.1062 s

The results show that full decompression is 100 times slower, respect partial one. It is
obvious that full decompression can be parallelized by processing multiple DCT blocks
at times, but compressed-based processing, as the proposed methods, still remains the
only way to effectively manage huge amount of data in less time. Then another important
paramenter is time to evaluate dictionary values, but cosider that k-means algorithm has a
time complexity equal to O(n - k - d) in which n is the number of features, £ is the number
of cluster and d is the dimension of features. For example proposed dominant features
has a constructed by 15D vectors, while another famous local features such as SIFT is
constructed with 128D descriptors, then is clear that also in that case JPEG-compressed
features outperforms in terms of time other kind of descriptors.

Table 5.6: Used quantization table
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Result: Calculate average decompression time
initialization;

while not at the end of image archive do
start partial decompression timer;

start full decompression timer;

extract DCT coefficients;

stop partial decompression timer;
accumulate partial decompression time;
2D 8x8 IDCT over DCT coefficients;
stop full decompression timer;
accumulate full decompression time;

end
average operation on partial decompression time;

average operation on full decompression time;
Algorithm 1: time experiment routine
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Chapter 6

Conclusions and Discussions

In this thesis a series of JPEG-compressed based desriptors were proposed and tested in
order to study the effectiveness of a JPEG-compressed-based image retrieval system. The
proposed descriptors provide, for the first time in RS context, a rough characterization of
the image content without complete decompression taking place. The first two kind of
features, dominant e statistical, were extracted from the low frequency DCT coefficients
of the JPEG block, in which one is formed by coefficients as they are, while the other is
made up of statistics derived from coefficients. Previous local features does not take into
account the spatial correlation with between neighbor coefficients, then a features derived
from steganalysis, called JPEG Markov feature, is used to capture the statistical behaviour
among near blocks and near coefficients of a image patch.Then these local features were
represented with a multi-dictionary BOVW approach, in which a set of meaninful features,
called dictionary, were used to describe the whole features archive and then a global sig-
nature of the image were derivated. In addition to all this spatial pyramid matching, that is
a weighted comparison strategy between image signatures, were used. In the first part of
experiments a CBIR system based on simple £-NN strategy was implemented and tested
with different dictionary lengths, from the experiments it has been found that the most
effective image characterisation is given by the so-called dominant features. While repre-
sentations that take into account a weak spatial information, such as JPEG markov features
and spatial pyramid matching, are given lowest results due to the sensitivity of k-NN to
the representation length.

After this first part of unsupervised experiments a supervised features weighting scheme
were proposed and tested for valorizing and fusiong optimale visual meaning of the pro-
posed features. In this last part of features testing only dominant features were testing in
a CBIR system based on SVM. For performing feature weighting multiple kernel learn-
ing algorithm were used. Then to each mid-level kind of feature representation a basis
kernel was associated and finally all kernel representations were optimally combined in
a supervised way. These experiments were conducted in a single-label environment and
in function to different training set size. From the results is clear that a CBIR system that
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combines multiple kernel learning with SVM, outperforms the one based on simple SVM.

Final section of experiments demonstrates the time-efficiency of extracting features
from compressed stream compared to the standard full image decompression method.
From the experiments are clear the possible benefits hat can be obtained in a real mas-
sive Earth observations archive retrieval system. Then experiments shown that proposed
descriptors could help in numerous way applications in which a large amount of data are
involved. Obviously there is to consider that all obtained results are derivated by testing a
small benchmark archive, therefore, a decrease in performance is expected when methods
are applied to real massive archives. Moreover, although RGB aerial orthoimagery im-
ages were used in the experimental analysis, the proposed descriptors can also be applied
on images with more than three bands, as the features are extracted independently from
each band.

During the processing chain there are several points where improvements can be made.
For example it can be possible to work at low-level features extraction in order to find a
stronger block representation compared with those proposed. Just think to the proposed
dominant features that are rotational variant. Another point of improvement could be at
level of BOVW representation, in which computer vision and pattern recognition liter-
atures are rich of methods that extend BOVW based features in powerful ways. Then
instead of building a strong features at low-level is can be possible to work at higher rep-
resentation level to make solid image descriptors.
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